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Steady, finite-amplitude internal-wave disturbances, induced by nearly hydrostatic
stratified flow over locally confined topography that is more elongated in the span-
wise than the streamwise direction, are discussed. The nonlinear three-dimensional
equations of motion are handled via a matched-asymptotics procedure: in an ‘inner’
region close to the topography, the flow is nonlinear but weakly three-dimensional,
while far upstream and downstream the ‘outer’ flow is governed, to leading order,
by the fully three-dimensional linear hydrostatic equations, subject to matching con-
ditions from the inner flow. Based on this approach, non-resonant flow of general
(stable) stratification over finite-amplitude topography in a channel of finite depth
is analysed first. Three-dimensional effects are found to inhibit wave breaking in
the nonlinear flow over the topography, and the downstream disturbance comprises
multiple small-amplitude oblique wavetrains, forming supercritical wakes, akin to the
supercritical free-surface wake induced by linear hydrostatic flow of a homogeneous
fluid. Downstream wakes of a similar nature are also present when the flow is uni-
formly stratified and resonant (i.e. the flow speed is close to the long-wave speed of
one of the modes in the channel), but, in this instance, they are induced by nonlin-
ear interactions precipitated by three-dimensional effects in the inner flow and are
significantly stronger than their linear counterparts. Finally, owing to this nonlinear-
interaction mechanism, vertically unbounded uniformly stratified hydrostatic flow
over finite-amplitude topography also features downstream wakes, in contrast to the
corresponding linear disturbance that is entirely locally confined.

1. Introduction
Even though it is central to various geophysical applications, three-dimensional

nonlinear stratified flow over locally confined topography has received relatively little
attention from a theoretical point of view. This lack of activity undoubtedly is related
to the fact that there is no three-dimensional counterpart of Long’s model (Long
1953) – under no circumstances can the equations governing finite-amplitude three-
dimensional disturbances be cast in linear form (Yih 1967) – so one is forced to deal
with an analytically intractable set of nonlinear partial differential equations. Even in
the strong-stratification limit where some analytical progress can be made as pointed
out by Drazin (1961), solving the full nonlinear three-dimensional problem cannot be
avoided in certain flow regions where Drazin’s solution is singular (see Baines 1995,
§ 6.7.1).
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As a result, apart from fully numerical simulations (e.g. Smolarkiewicz & Rotunno
1989, 1990; Smith & Grøn̊as 1993; Hanazaki 1994), prior theoretical work on three-
dimensional stratified flow over topography is based on small-amplitude linear or
weakly nonlinear approaches. Specifically, Crapper (1959, 1962), Gjevik & Marthinsen
(1978) and Sharman & Wurtele (1983), among others, used linear theory along the
lines of the classical Kelvin ship-wave problem to discuss lee-wave patterns induced by
three-dimensional topography under various flow conditions. Gjevik & Marthinsen
(1978), in particular, analysed satellite photographs of atmospheric internal-wave
patterns generated by isolated islands in the Norwegian Sea and the Barents Sea and
were able to account for several of the observed features, although the origin of a
prominent oblique wavetrain east of the island of Jan Mayen remained unexplained
(see Baines 1995, figure 6.17). More importantly, however, based on linear theory, one
cannot predict the onset of flow stagnation that is the precursor to overturning or
flow splitting (in three-dimensional flow) and related phenomena of geophysical and
meteorological interest (Smith 1989).

There is, in addition, a significant body of work dealing with weakly nonlinear
two-layer or continuously stratified flow over topography in a channel of finite depth
under resonance conditions – when the flow speed is close to the long-wave speed of
one of the linear modes (see, for example, Baines 1995, § 2.6). As in the analogous free-
surface problem (Akylas 1994), weakly nonlinear resonant flow in general is governed
by the forced Korteweg–de Vries (fKdV) equation in the two-dimensional problem
and by the forced Kadomtsev–Petviashvili (fKP) equation when three-dimensional
disturbances are allowed. Numerical solutions of these evolution equations reveal
strong upstream influence in the form of upstream-propagating KdV solitary waves
owing to nonlinear effects.

In contrast to these linear or weakly nonlinear approaches, Grimshaw & Yi (1991)
pointed out that in the special case of uniformly stratified (constant Brunt–Väisälä
frequency) two-dimensional flow in the Boussinesq limit, near resonance conditions,
small-amplitude topography induces a finite-amplitude disturbance that is governed by
a nonlinear integral–differential equation rather than the fKdV equation. The fact that
a finite-amplitude theory can be developed in this instance is not surprising, given that
Long’s model holds so the equations for steady two-dimensional uniformly stratified
Boussinesq flow can be cast in linear form. Of course, any departure from these flow
conditions is expected to introduce nonlinear terms in the governing equations. As a
result, the temporal-evolution term of the Grimshaw–Yi (GY) equation, unlike the
fKdV equation, is in fact nonlinear, as are the terms arising from possible small non-
uniformities in the Brunt–Väisälä frequency, non-Boussinesq effects and the presence
of weak shear (Clarke & Grimshaw 1999).

While it is valid under particular flow conditions and precludes three-dimensional
effects, the GY equation can be used to trace the evolution of two-dimensional
disturbances in the finite-amplitude régime up to the onset of breaking that signals
the appearance of local density inversions and flow reversals; these phenomena are
beyond the reach of linear and weakly nonlinear theories. The GY equation predicts
that transient breaking is in fact quite common near resonance, consistent with
numerical simulations of the full Euler equations (Rottman, Broutman & Grimshaw
1996).

In the further development of the theory, Prasad & Akylas (1997) noted that
the GY equation is not uniformly valid far downstream of the topography, where
multiple fronts, or ‘shelves’, are generated, in agreement with numerical simulations
of the Euler equations (Lamb 1994). These downstream shelves, although of relatively
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small amplitude, carry O(1) mass and are driven by nonlinear interactions precipitated
by the transience of the main disturbance over the topography.

Kantzios & Akylas (1993) developed a finite-amplitude theory for vertically un-
bounded nearly uniformly stratified flow over two-dimensional topography. In this
flow geometry, which is most relevant to atmospheric applications, resonance occurs
independently of the flow speed because the spectrum of long-wave modes is contin-
uous, and Kantzios & Akylas (1993) derived the large-depth counterpart of the GY
equation that governs the evolution of two-dimensional finite-amplitude long-wave
disturbances. Based on this asymptotic theory, Prasad, Ramirez & Akylas (1996)
later found that Long’s steady states in vertically unbounded flow over an algebraic
mountain (‘Witch of Agnesi’) are unstable to modulations at topography amplitude
significantly below (25–30%) the critical value for overturning predicted by Long’s
model. While no transient breaking occurs here, this modulational instability causes
the flow to fluctuate about Long’s steady state over a long timescale, consistent with
recent experimental observations (Bonneton, Auban & Perrier 1999).

The present study is motivated by the need to improve our theoretical understanding
of three-dimensional nonlinear stratified flow over topography. As already remarked,
this is an analytically intractable problem in general, and the majority of prior theo-
retical work on finite-amplitude disturbances has dealt with strictly two-dimensional
flow. We shall consider nearly hydrostatic nonlinear flow over locally confined topog-
raphy that is, however, more elongated in the spanwise than the streamwise direction;
in this instance, three-dimensional effects are expected to be relatively weak and can
be handled by perturbation methods as long as no breaking streamlines are present
in the underlying two-dimensional nonlinear flow and the topography remains an
isopycnal (see § 3.4 below). Moreover, for the sake of simplicity, we shall limit the
discussion to purely steady waves.

Even under these assumptions, the analysis of nonlinear three-dimensional flow is
quite involved: the induced disturbance is in fact weakly three-dimensional only in
an ‘inner’ region close to the topography; to determine this inner flow completely, it
is necessary to ensure matching with the ‘outer’ flow, far upstream and downstream,
which is weakly nonlinear but fully three-dimensional. This matching procedure is
illustrated here in terms of three specific examples: non-resonant flow of general
(stable) stratification over finite-amplitude topography in a channel of finite depth,
resonant uniformly stratified flow over small-amplitude topography in a channel
of finite depth, and uniformly stratified flow of large depth over finite-amplitude
topography.

In all three cases, the downstream response comprises multiple oblique wavetrains,
forming supercritical wakes, akin to the one observed east of the island of Jan Mayen
in the satellite photographs analysed by Gjevik & Marthinsen (1978). It is interesting,
however, that the mechanism responsible for these wakes depends on whether the
flow is resonant; under resonance conditions, in particular, the nonlinear nature of the
inner flow is essential to this generation mechanism, for the oblique wavetrains found
downstream would be significantly weaker (in finite depth) or completely absent (in
infinite depth) if the inner flow were linear.

The inner-flow analysis in the case of non-resonant flow of finite depth, moreover,
establishes that three-dimensional effects inhibit breaking, in qualitative agreement
with numerical simulations (Smolarkiewicz & Rotunno 1990; Smith & Grøn̊as 1993)
and laboratory observations (Castro & Snyder 1993). Specifically, the critical topogra-
phy amplitude for overturning of three-dimensional flow is increased by O(α) relative
to that of strictly two-dimensional flow, α� 1 being the topography aspect ratio.
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It appears that the approach taken here could be extended to account for transient
effects on resonant uniformly stratified flow over weakly three-dimensional topogra-
phy, generalizing the studies of Grimshaw & Yi (1991) and Kantzios & Akylas (1993)
of the analogous two-dimensional problem.

2. Formulation
The equations governing steady, inviscid, incompressible, stratified flow consist of

incompressibility

∇ · u = 0, (2.1)

mass conservation

u · ∇ρ = 0, (2.2)

and the momentum equation

u · ∇u = −1

ρ
∇p− ∇(gz), (2.3)

where u = (u, v, w) is the velocity field, ρ is the density, p is the pressure and g is
the gravitational acceleration. Furthermore, assuming that the flow starts from rest,
one may show, using the circulation theorem (Yih 1979, p. 62), that the vorticity,
ω = ∇× u, lies in surfaces of constant ρ:

ω · ∇ρ = 0. (2.4)

It is convenient to work with the streamfunctions Ψ and Φ:

u = ∇Φ× ∇Ψ (2.5)

and write

ρ = ρ(Ψ ); (2.6)

thus, (2.1) and (2.2) are automatically satisfied and (2.4) yields

ω · ∇Ψ = 0. (2.7)

On the hypothesis of no upstream influence, the flow is undisturbed far upstream
(x→ −∞):

Ψ ∼ U0z, Φ ∼ y, ρ ∼ ρ0(z) (x→ −∞), (2.8)

U0 and ρ0(z) being the background flow speed and density profiles, respectively.
Hence, in view of (2.6),

ρ = ρ0(Ψ/U0). (2.9)

Finally, making use of (2.5), (2.6) and (2.7), the momentum equation (2.3) can be
manipulated to the form

∇(p+ 1
2
ρu2 + ρgz) = ρ(ω · ∇Φ)∇Ψ +

dρ

dΨ
( 1

2
u2 + gz)∇Ψ,

from which it is clear that B ≡ p+ 1
2
ρu2 + ρgz is a function of Ψ alone and

dB
dΨ

= ( 1
2
u2 + gz)

dρ

dΨ
+ ρ(ω · ∇Φ). (2.10)
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On the other hand, in view of the upstream conditions (2.8),

dB
dΨ

=

(
1
2
U2

0 + g
Ψ

U0

)
dρ

dΨ

so (2.10) becomes

ω · ∇Φ =
1

ρ

dρ

dΨ

{
1
2
U2

0 − 1
2
u2 +

g

U0

(Ψ −U0z)

}
. (2.11)

Having solved for the density ρ in terms of Ψ according to (2.9), and since
ω = ∇ × ∇Φ × ∇Ψ , (2.7) and (2.11) may now be viewed as two equations for
determining Ψ and Φ (Yih 1967) and thereby the velocity field via (2.5). One may
also regard this equation set as the three-dimensional counterpart of the celebrated
Long’s equation (Dubreil-Jacotin 1935; Long 1953) that forms the basis of Long’s
model for two-dimensional steady flow. Indeed, on the assumption that the flow is
two-dimensional, equation (2.7) is automatically satisfied and (2.11) reduces to

∇2Ψ +
N2(Ψ )

gU0

{
1
2
(U2

0 −Ψ 2
x −Ψ 2

z ) +
g

U0

(Ψ −U0z)

}
= 0, (2.12)

where N is the Brunt–Väisälä frequency defined by

N2(z) = − g

ρ0

dρ0

dz
.

An interesting feature of equation (2.12) is that it takes a linear form for uniformly
stratified (N constant) background flow in the Boussinesq limit (weak stratification),
making it feasible to discuss finite-amplitude disturbances under these conditions.

Unfortunately, no such simplification appears possible when the flow is three-
dimensional. To make further analytical progress, we shall resort to perturbation
methods and consider nearly hydrostatic nonlinear flow of a Boussinesq fluid over
locally confined topography that is more elongated in the spanwise (y-) than the
streamwise (x-) direction. In terms of the long-wave parameter µ, the topography
aspect ratio α and the Boussinesq parameter β, the flow régime of interest is defined
by

µ =
H

L
� 1, α =

L

D
� 1, β =

HN2
0

g
→ 0,

where N0 is a characteristic Brunt–Väisälä frequency, H is a vertical lengthscale and
L, D are the streamwise and spanwise topography lengthscales, respectively. On the
other hand, no restriction is placed at this stage on the nonlinear parameter, ε = h0/H ,
h0 being the topography peak amplitude.

It is convenient to use dimensionless variables, appropriate for discussing nearly
hydrostatic flow:

(x, y) = L(x′, y′), z = Hz′, Ψ = HU0Ψ
′, Φ = LΦ′.

Dropping the primes, the governing equations (2.7) and (2.11) in dimensionless form
then read (in the Boussinesq limit, β → 0)

vxΨz −Ψxvz +Ψyuz −Ψzuy + µ2(Ψxwy −Ψywx) = 0, (2.13)

vxΦz − Φxvz +
N2(Ψ )

F2
(Ψ − z) + Φyuz − uyΦz + µ2(Φxwy − Φywx) = 0, (2.14)
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where u = (u, v, w) may be expressed in terms of Ψ and Φ via (2.5) and

F =
U0

N0H

is the Froude number.
As already indicated, we shall take the topography to be more elongated in the

spanwise than the streamwise direction. Accordingly, the topography profile,

z = εf(x, Y ), (2.15)

depends on the stretched spanwise coordinate Y = αy, and the boundary condition
on the topography reads

Ψ = 0 (z = εf(x, Y )). (2.16)

In view of (2.9), (2.16) states that the topography is an isopycnal, implicity precluding
streamline splitting (see also § 3.4 below).

Intuitively, one would expect the disturbance induced by flow over topography of
the form (2.15) to be weakly three-dimensional . This suggests rescaling the flow
streamfunctions as follows:

Ψ = z + ψ(x, Y , z), Φ = y + αφ(x, Y , z), (2.17)

in anticipation that the streamlines are deflected by O(1) in the vertical direction but
by only O(α) in the spanwise direction. From (2.5), the velocity components then are
given by

u = Ψz + α2U, v = αV , w = −Ψx + α2W, (2.18)
where

U = (U,V ,W ) = ∇φ× ∇Ψ (2.19)

represents the three-dimensional correction to the flow field. (The ∇ operator in (2.19)
involves derivatives with respect to Y rather than y.)

Finally, implementing (2.17) and (2.18), the governing equations (2.13) and (2.14)
take the form

J(V ,Ψ ) = ΨzΨzY −ΨYΨzz + O(α2, µ2), (2.20)

Ψzz +
N2(Ψ )

F2
(Ψ − z) = −µ2Ψxx + α2{φz(ΨzY − Vx)

+φxVz − φYΨzz −Uz}+ O(α4, α2µ2), (2.21)

J(p, q) = pxqz − pzqx being the Jacobian.
Based on equations (2.20) and (2.21), it is straightforward to set up a perturbation

scheme for analysing the flow field: to leading order, (2.21) is the hydrostatic version
of Long’s equation (2.12) for two-dimensional flow (in the Boussinesq limit); solving
(2.21) first, subject to the boundary condition (2.16) on the topography and the
appropriate condition at the upper boundary of the flow domain, yields the leading-
order approximation to Ψ , Ψ (0) say. The spanwise velocity component V (0) at each Y
then follows from (2.20) by integrating along x on surfaces of constant Ψ (0) (assuming
Ψ (0)
z 6= 0); and, finally, in view of (2.19), φ(0) is obtained from

V = J(Ψ,φ), (2.22)

via a second integration in x, keeping Ψ (0) and Y fixed. If desired, the procedure can
be repeated to find higher-order corrections.



Three-dimensional aspects of nonlinear stratified flow 87

This perturbation expansion becomes non-uniform, however, far upstream and
downstream of the topography. It turns out that the far-field disturbance is weakly
nonlinear but not weakly three-dimensional, invalidating the scalings (2.17), and it
is governed by the linear three-dimensional hydrostatic equations to leading order.
To fully determine the flow field, it is necessary to match the nonlinear weakly
three-dimensional disturbance over the topography with the weakly nonlinear three-
dimensional far-field response. This matching procedure is discussed below for three
particular flow configurations.

3. Non-resonant flow of finite depth
Taking the flow to be bounded by a rigid lid at z = 1, Ψ satisfies the boundary

condition

Ψ = 1 (z = 1), (3.1)

in addition to (2.16) on the topography.
Furthermore, it is assumed that the flow is not resonant: F is not close to any of

the critical Froude numbers Fn (n = 1, 2, 3, . . .), associated with the linear long-wave
modes {χn} (n = 1, 2, 3, . . .). These are defined by the eigenvalue problem

χnzz +
N2(z)

F2
n

χn = 0 (0 < z < 1), (3.2)

χn = 0 (z = 0, 1), (3.3)

F1 > F2 > · · · being the eigenvalues, and form an orthogonal set:∫ 1

0

N2(z)χn(z)χm(z) dz = Inδmn, (3.4)

where

In =

∫ 1

0

N2(z)χ2
n(z) dz

and δmn is the Kronecker delta.
It also proves useful to define the functions {ξn} (n = 0, 1, 2, . . .):

ξ0 = 1, ξn = χnz (n > 1), (3.5)

which, using (3.2)–(3.4), can be shown to form an orthogonal set as well:∫ 1

0

ξn(z)ξm(z) dz = Knδmn, (3.6)

where

Kn =

∫ 1

0

ξ2
n(z) dz.

3.1. Inner flow

Implementing now the perturbation procedure outlined in § 2, Ψ (0) = z + ψ(0)(x, Y , z)
satisfies a nonlinear boundary-value problem consisting of equation (2.21) (with
α = µ = 0), subject to the boundary conditions (2.16) and (3.1). Since x and Y
enter only parametrically in this problem, Ψ (0) is determined by solving a two-point
boundary-value problem at each x and Y , and the disturbance ψ(0) is locally confined



88 T. R. Akylas and K. S. Davis

if the topography profile εf(x, Y ) → 0 as x → ±∞. Save for special cases (e.g. when
N is constant and Long’s model applies), Ψ (0) has to be found numerically in general.

Proceeding next to determine the associated spanwise velocity component V (0), the
form of equation (2.20) suggests using Ψ (0) instead of z as independent variable:

(x, Y , z)→ (x, Y ,Ψ (0)).

Introducing this transformation is permissible as long as no breaking streamlines are
present anywhere in the leading-order flow field (Ψ (0)

z 6= 0). In general, this places a
restriction on the topography amplitude parameter ε:

ε 6 ε2D
c , (3.7)

ε2D
c being the critical value of ε for overturning of the leading-order two-dimensional

flow, given the Froude number F .
With this caveat, V (0) then is readily found from (2.20) by integrating along x:

V (0) =
∂

∂Y

∫ x

−∞
dxψ(0)

z

∣∣∣∣
Ψ (0)

+ C(0)(Y ,Ψ (0)), (3.8)

where C(0) is a constant of integration and |Ψ (0) indicates that the integration is carried
out holding Ψ (0) fixed. Similarly, it follows from (2.22) that

φ(0) = −
∫ x

0

dx
V (0)

Ψ
(0)
z

∣∣∣∣
Ψ (0)

+D(0)(Y ,Ψ (0)), (3.9)

D(0) being another constant of integration.
It is already evident, however, that the above perturbation solution breaks down

far from the topography: while ψ(0) is locally confined, V (0) according to (3.8) does
not go to zero both far upstream and downstream; and, to make matters worse, since
φ(0) in (3.9) grows linearly in x as x→ ±∞, the O(α2) correction to Ψ (0) according to
(2.21) is also expected to grow like x far from the topography.

Similar non-uniformities arise in the theory of Grimshaw & Yi (1991) for resonant
uniformly stratified flow over two-dimensional topography and were interpreted by
Prasad & Akylas (1997) in terms of a matched-asymptotics procedure: the ‘outer’ flow
far downstream of the topography comprises multiple small-amplitude shelves, driven
by the transient evolution of the ‘inner’ flow over the topography that is governed by
the GY equation.

Taking a similar approach in the problem at hand, the weakly three-dimensional
nonlinear flow over the topography may be viewed as an inner flow. Here, however,
unlike the problem considered in Prasad & Akylas (1997), the inner expansion that
is based on equations (2.20) and (2.21) breaks down both far downstream and far
upstream of the topography. Hence, to determine the inner flow, in particular the
constants C(0) and D(0) in (3.8) and (3.9), it becomes necessary to examine the outer
flow far from the topography and ensure matching.

In preparation for matching, note that, according to (3.8), the inner spanwise veloc-
ity component experiences a known finite jump from far upstream to far downstream,

∆V (0)(Y , z) ≡ V (0)
∣∣x→∞
x→−∞ =

∂

∂Y

∫ ∞
−∞

dxψ(0)
z

∣∣∣∣
Ψ (0)

, (3.10)

and this will serve as a matching condition on the outer flow.
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3.2. Outer flow

The inner expansion discussed above becomes non-uniform far upstream and down-
stream of the topography because the disturbance ceases to be weakly three-
dimensional there, invalidating the scalings (2.17).

To describe the outer flow, the outer streamwise coordinate, x̃ = αx, is scaled in
sympathy with the spanwise coordinate Y = αy, and the inner scalings (2.17) are
replaced with

Ψ̃ = z + αψ̃(x̃, Y , z), Φ̃ = y + φ̃(x̃, Y , z), (3.11)

using tildes throughout to denote the outer-flow variables. Accordingly, from (2.5),
the outer velocity components are given by

ũ = 1 + α(ψ̃z + φ̃Y ) + O(α2), ṽ = −αφ̃x̃ + O(α2), w̃ = −α2ψ̃x̃ + O(α3). (3.12)

Upon substitution of (3.11) and (3.12) into (2.13) and (2.14), to leading order,
it is found that ψ̃ and φ̃ are governed by the linear three-dimensional hydrostatic
equations:

ψ̃zz +
N2(z)

F2
ψ̃ + φ̃Y z = 0, (3.13)

φ̃x̃x̃ + φ̃Y Y + ψ̃Y z = 0. (3.14)

Moreover, in view of (2.16) and (3.1), the appropriate boundary conditions are

ψ̃ = 0 (z = 0, 1), (3.15)

assuming that the topography is locally confined.
Equations (3.13) and (3.14), subject to the boundary conditions (3.15), are solved

by first taking the Fourier transform with respect to Y ,

ψ̂(x̃, z; l) =
1

2π

∫ ∞
−∞
ψ̃(x̃, Y , z)e−ilY dY ,

assuming that the flow domain is unbounded in the spanwise direction. ψ̂ is then
expanded in terms of the long-wave modes {χn} defined earlier in (3.2) and (3.3):

ψ̂ =

M−1∑
n=1

a−n e|l|qnx̃χn(z) (x̃ < 0), (3.16a)

ψ̂ =

M−1∑
n=1

a+
n e−|l|qnx̃χn(z) +

∞∑
n=M

(bn sin lqnx̃+ dn cos lqnx̃)χn(z) (x̃ > 0), (3.16b)

where the integer M > 1 is defined so that F is supercritical relative to long-wave
modes of number M and higher: FM < F < FM−1; moreover, qn ≡ Fn/(|F2 − F2

n |)1/2

and a±n (l), bn(l) and dn(l) are constants to be determined. Also, as required by the
radiation condition, propagating waves are present in the downstream expression
(3.16bb) only, the upstream response (3.16ba) being evanescent.

Using (3.16b), the corresponding expansions for φ̂ follow from (3.14):

φ̂ = a−0 e|l|x̃ − i

l

M−1∑
n=1

a−n
F2
n − F2

F2
e|l|qnx̃ξn(z) (x̃ < 0), (3.17a)
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φ̂ = a+
0 e−|l|x̃ − i

l

M−1∑
n=1

a+
n

F2
n − F2

F2
e−|l|qnx̃ ξn(z)

+
i

l

∞∑
n=M

F2 − F2
n

F2
(bn sin qnlx̃+ dn cos qnlx̃) ξn(z) (x̃ > 0), (3.17b)

where a±0 (l) are two additional constants and {ξn} (n = 0, 1, 2, . . .) is the set of functions
defined in (3.5).

3.3. Matching

We now proceed to match the outer flow to the inner flow and thereby determine the
various constants in (3.16b) and (3.17) as well as C(0)(Y ,Ψ (0)) and D(0)(Y ,Ψ (0)) that
appeared earlier in the inner-flow expressions (3.8) and (3.9).

Since ṽ = −αφ̃x̃ + O(α2) according to (3.12), matching with the inner flow (2.18)
requires φ̃ to be continuous across x̃ = 0:

φ̃
∣∣x̃→0+

x̃→0− = 0. (3.18)

Returning to (3.17) and invoking the orthogonality property (3.6) of {ξn}, this
matching condition implies that

dn = 0 (n >M), (3.19)

a+
n = a−n (0 6 n 6M − 1). (3.20)

Furthermore, in view of (3.10), φ̃x̃ suffers a jump across x̃ = 0 imposed by the inner
flow:

−φ̃x̃
∣∣x̃→0+

x̃→0− = ∆V (0)(Y , z). (3.21)

To enforce this condition, using the orthogonality property (3.6) once more, ∆V (0) is
expanded in terms of {ξn}:

∆V (0) =
∂

∂Y

∞∑
n=0

sn(Y )ξn(z), (3.22)

where

Kn sn =

∫ 1

0

dz∆V (0) ξn.

Recall that ∆V (0) is determined by the inner flow according to (3.10) so the functions
sn(Y ) (n > 0) in (3.22) are already known; the matching condition (3.21), combined
with (3.20), thus determines the remaining coefficients a±n and bn in (3.16b) and (3.17)
in terms of these known functions:

a+
n = a−n = −|l|

2

F2

Fn(F2
n − F2)1/2

ŝn(l) (0 6 n 6M − 1), (3.23)

bn = −l F2

Fn(F2 − F2
n )1/2

ŝn(l) (n >M). (3.24)

Finally, inserting (3.19), (3.23) and (3.24) into (3.16b) and (3.17), and inverting the
Fourier transforms, the outer-flow streamfunctions read

ψ̃ = −F
2

2

M−1∑
n=1

χn(z)

Fn(F2
n − F2)1/2

∫ ∞
−∞

dl|l|ŝn(l) eilY e|l|qnx̃ (x̃ < 0), (3.25a)
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ψ̃ = −F
2

2

M−1∑
n=1

χn(z)

Fn(F2
n − F2)1/2

∫ ∞
−∞

dl|l|ŝn(l) eilY e−|l|qnx̃

+
F2

2

∞∑
n=M

χn(z)

Fn(F2 − F2
n )1/2
{s′n(Y + qnx̃)− s′n(Y − qnx̃)} (x̃ > 0); (3.25b)

φ̃ =
1

2

M−1∑
n=1

ξn(z)

qn

∫ ∞
−∞

dl i sgn l ŝn(l) eilY e|l|qnx̃ (x̃ < 0), (3.26a)

φ̃ =
1

2

M−1∑
n=1

ξn(z)

qn

∫ ∞
−∞

dl i sgn l ŝn(l) eilY e−|l|qnx̃

− 1

2

∞∑
n=M

ξn(z)

qn
{sn(Y + qnx̃)− sn(Y − qnx̃)} (x̃ > 0), (3.26b)

where q0 = 1 and primes in (3.25b) denote derivatives of sn with respect to its
argument. Based on (3.25) and (3.26), the outer-flow velocity components can be
readily obtained from (3.12).

According to (3.25) and (3.26), the downstream disturbance comprises multiple pairs
of oblique wavetrains, oriented at angles ± tan−1 qn (n >M) to the flow direction,
corresponding to the modes relative to which the flow is supercritical (F > Fn, n >M).
While the amplitudes of these supercritical wakes are controlled, via (3.10) and (3.22),
by the inner flow that is nonlinear, their generation mechanism actually does not
rely on nonlinear effects: in expanding the jump ∆V (0) in terms of the modes {ξn}
according to (3.22), the coefficients sn(Y ) (n > 0) are non-zero in general even when
the topography is of small amplitude (ε � 1) and the inner flow is linear. Hence,
one may regard the supercritical wakes found here as direct counterparts of the
free-surface wake induced by linear hydrostatic flow of a homogeneous fluid over
locally confined topography at supercritical Froude number (Baines 1995, § 2.2).

On the basis of (3.25) and (3.26), we have computed the far-field disturbance
induced by flow over topography with Gaussian profile,

f = exp (−x2 − Y 2), (3.27)

under various flow conditions. The results turn out to be qualitatively similar for all
cases considered so we focus on the simplest case of uniformly stratified (N = 1) flow
for which the eigenvalue problem (3.2) and (3.3) can be solved analytically:

Fn =
1

nπ
, χn = sin nπz (n > 1). (3.28)

To bring out the three-dimensional aspects of the flow, we display in figure 1
intersections of surfaces of constant Φ̃ with the plane z = 0.9 for flow with Froude
number F = 0.5 over topography with ε = 0.75 and α = 0.2. Since F > F1 in this
instance, the flow is supercritical with respect to all long-wave modes (M = 1), but
the wake corresponding to the lowest mode (n = 1) dominates the rest and is the
only one that can be seen clearly in figure 1. Also, note that, consistent with the
matching condition (3.21), the outer-flow streamlines feature cusps at x̃ = 0 across
the topography in the Y -direction; these discontinuities are smoothed out by the
inner flow as discussed below.
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Figure 1. Far-field (outer) disturbance induced by uniformly stratified (N = 1) flow with Froude
number F = 0.5 over topography with the Gaussian profile (3.26), peak amplitude ε = 0.75 and
aspect ratio α = 0.2; intersections of surfaces of constant Φ̃ with the plane z = 0.9 are plotted.

To complete the discussion of three-dimensional effects on the inner flow, it remains
to determine the functions C(0)(Y ,Ψ (0)) and D(0)(Y ,Ψ (0)) that appear in (3.8) and (3.9),
respectively. To this end, matching the inner spanwise velocity component V (0) in (3.8)
with its outer-flow counterpart, −φ̃x̃, requires that

lim
x→±∞V

(0) = lim
x̃→0±

(−φ̃x̃); (3.29)

from (3.8) and (3.26), taking into account (3.21), this condition is satisfied if

C(0)(Y ,Ψ (0)) = −1

2

∂

∂Y

M−1∑
n=0

sn(Y ) ξn(Ψ
(0)), (3.30)

and the inner spanwise velocity is now completely known.
Next, we attempt to match the inner and outer expressions for the streamfunction

Φ. From (3.11) and (3.26), the inner limit of the outer expression is

lim
x̃→0

Φ̃ = y +
1

2

M−1∑
n=0

ξn(z)

qn

∫ ∞
−∞

i sgn l ŝn(l) eilY dl. (3.31)

Matching of (3.31) with the outer limit of the inner expression for Φ, as given by
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(2.17) and (3.9), is not possible, however, unless D(0) in (3.9) is taken to be O(1/α).
This reflects the fact that the outer-flow streamlines are deflected by y = O(1) in the
spanwise direction, in contrast to the inner-flow scalings (2.17) which assume O(α)
streamline lateral deflection.

To handle this difficulty, the inner-flow scaling of Φ adopted in (2.17) is slightly
revised:

Φ = y + φ̄(Y ,Ψ (0)) + αφ, (3.32)

where

φ̄ = lim
x̃→0

φ̃

is given by (3.31); thus matching with the outer flow is achieved to leading order.
Moreoever, while this rescaling does not impact V (0) in view of (2.22), it is now clear
that the appropriate inner expansion for Ψ takes the form

Ψ = Ψ (0) + αΨ (1) + O(α2, µ2). (3.33)

Returning next to equation (2.14) and the boundary conditions (2.16) and (3.1),
Ψ (1)(x, Y , z) satisfies the forced problem

Ψ (1)
zz +

1

F2
{N2(Ψ (0)) + (Ψ (0) − z)(N2)z(Ψ

(0))}Ψ (1) = R (εf < z < 1), (3.34)

Ψ (1) = 0 (z = εf, 1), (3.35)

where

R = φ̄z(Ψ
(0)
zY − V (0)

x ) + φ̄xV
(0)
z − φ̄Y Ψ (0)

zz − (Ψ (0)
z φ̄Y |Ψ (0) )z. (3.36)

The problem (3.34) and (3.35) must be solved numerically in general; but, for the
purpose of matching with the outer flow, note that the outer limit (x → ±∞) of
Ψ (1)satisfies a simplified version of this problem:

Ψ (1)
zz +

N2(z)

F2
Ψ (1) = −φ̄Y z (0 < z < 1), (3.37)

Ψ (1) = 0 (z = 0, 1). (3.38)

Furthermore, from the outer solution (3.25), the inner limit (x̃→ 0) of ψ̃ is

lim
x̃→0

ψ̃ = −F
2

2

M−1∑
n=1

χn(z)

Fn(F2
n − F2)1/2

∫ ∞
−∞
|l| ŝn(l) eilY dl, (3.39)

and, making use of (3.2), (3.3), (3.31) and (3.32), it is easy to verify that (3.39) satisfies
(3.37) and (3.38), confirming that the inner and outer expressions for Ψ match to
O(α).

3.4. Wave breaking

As mentioned earlier, in general, two-dimensional nonlinear stratified flow features
breaking streamlines, associated with local flow reversals and density inversions,
when the topography amplitude parameter exceeds a certain critical value (ε > ε2D

c )
depending on the Froude number F . On physical grounds, it would seem that the
critical topography amplitude for overturning of three-dimensional flow, ε3D

c , would
be higher than ε2D

c (for fixed F), given that not all the flow has to climb over the peak
height of the topography in this case. Apart from wave breaking, three-dimensional
nonlinear stratified flow may also experience streamline splitting, initiated by the
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appearance of stagnation on the topography surface rather than inside the flow field.
When this occurs, isopycnal surfaces intersect the topography, the low-level flow now
passing around instead of over the topography, and the boundary condition (2.16) is
invalidated.

Smith (1989) used linear theory to diagnose the onset of wave breaking and flow
splitting in three-dimensional hydrostatic flow under various conditions. When the
topography aspect ratio is small (α � 1), he found that stagnation in the interior of
the flow field occurs at a topography amplitude below that required for stagnation
on the topography surface, suggesting that breaking precedes flow splitting, while the
opposite is true in the case of large topography aspect ratio (α� 1). Even though the
assumption of small disturbances cannot be justified as flow stagnation is approached,
the numerical simulations of Smolarkiewicz & Rotunno (1990) indicate that the onset
of flow splitting on the windward side of a symmetric bell-shaped obstacle is well
described by linear theory.

In addition, there is experimental evidence that the critical topography amplitude
for breaking increases as the topography aspect ratio α is increased. Specifically, Castro
& Snyder (1993) conducted experiments on wave breaking in uniformly stratified flow
of finite depth over three-dimensional obstacles of various shapes and aspect ratios
in the range 0.2 < α < 2. They used the topographic Froude number F∗ = F/ε,
rather than ε, to present their results which indicate that the critical value of F∗ for
overturning, F∗c , decreases as α is increased; but, while the nonlinear two-dimensional
theory (Long’s model) provides a reasonable upper bound for F∗c in the limit α→ 0,
the linear three-dimensional theory over predicts F∗c by more than 30%.

The present asymptotic theory allows for finite-amplitude disturbances with the
proviso that ε 6 ε2D

c (no breaking streamlines are present in the underlying two-
dimensional flow field described by Ψ (0)) and can be used to examine, in a consistent
way, how weak three-dimensional effects influence breaking in the small-aspect-ratio
régime (α� 1).

The onset of breaking occurs when the streamwise velocity component u first
vanishes in the interior of the flow field. From (2.5), using (3.32) and (3.33), the
inner-flow expression for u, correct to O(α), is

u = Ψ (0)
z + α(Ψ (1)

z +Ψ (0)
z φ̄Y |Ψ (0) ). (3.40)

Hence, three-dimensional effects either favour or inhibit breaking, depending on the
sign of the O(α) term in (3.40) at the location(s) where Ψ (0)

z is about to vanish.
We have explored the role that the O(α) term in (3.40) plays with regard to

breaking in flow over topography with the Gaussian profile (3.27), under various flow
conditions, for three specific profiles of Brunt–Väisälä frequency:

(i) N = 1, (ii) N = 1 + 1
3

tanh [20(z − 1
2
)], (iii) N = 1 + 1

2
sech [20(z − 1

2
)], (3.41)

corresponding, respectively, to uniformly stratified flow and to flow with a sharp
jump or a sharp peak in N at z = 1

2
. In all cases examined, it was found that

the three-dimensional correction to the flow delays the onset of breaking, and some
representative results are displayed in figures 2(a–c). Since the maximum of the
topography profile (3.27) is at the centreplane Y = 0, it is clear that Ψ (0)

z would first
vanish at some point there when ε equals ε2D

c , the two-dimensional critical value for
overturning, depending on the Froude number F . Figures 2(a–c) show plots of the
streamwise velocity profile above the peak of the topography, u (x = 0, Y = 0, z), both
with and without the three-dimensional correction in (3.40), for ε slightly below ε2D

c ,
in three flow configurations corresponding to the choices of Brunt–Väisälä frequency
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(3.41). Note that the three-dimensional correction alters the velocity profile so as to
inhibit breaking, consistent with the experimental observations of Castro & Snyder
(1993). Furthermore, it is interesting that the three-dimensional correction also tends
to diminish u on the surface of the topography, although the critical value of α at
which stagnation eventually occurs there, marking the onset of flow splitting, cannot
be determined by the present theory.

Based on the asymptotic theory, however, we may obtain more precise information
on how ε3D

c varies with the topography aspect ratio for α � 1. Specifically, a first-
order Taylor expansion of u about the two-dimensional critical conditions for breaking
(α = 0, ε = ε2D

c ) yields

∂u

∂ε

∣∣∣∣
c

(ε3D
c − ε2D

c ) +
∂u

∂α

∣∣∣∣
c

α ≈ 0,

where, according to (3.40),

∂u

∂α

∣∣∣∣
c

= Ψ (1)
z +Ψ (0)

z φ̄Y
∣∣
Ψ (0)

and (∂u/∂ε)|c is known from the leading-order two-dimensional flow field Ψ (0). There-
fore, for fixed Froude number F ,

ε3D
c ≈ ε2D

c − (∂u/∂α)|c
(∂u/∂ε)|c α, (3.42)

to first order in the limit α→ 0.
In the three examples discussed above, (∂u/∂α)|c > 0 and (∂u/∂ε)|c < 0 so ε3D

c

increases linearly with α according to (3.42). In the case of uniformly stratified flow
(N = 1) with F = 0.1326, for instance, two-dimensional breaking occurs above the
peak of the topography at z = 0.59 and (3.42) yields

ε3D
c ≈ ε2D

c + 1.2α, (3.43)

where ε2D
c = 0.082; under these flow conditions, the relative increase of ε3D

c caused by
three-dimensional effects turns out to be significant even for quite small values of α
(e.g. ε3D

c /ε
2D
c ≈ 2.5 for α = 0.1).

4. Resonant flow of finite depth
When the flow speed is close to one of the long-wave-mode speeds in the channel,

F ≈ Fm say, the resonant mode dominates in the inner flow and a separate analysis
is necessary. In the special case of two-dimensional uniformly stratified flow (N = 1)
in particular, Grimshaw & Yi (1991) pointed out that, near resonance conditions,
small-amplitude topography (ε� 1) induces a finite-amplitude response and derived
an equation that describes the transient evolution of the disturbance up to the onset
of breaking. The evolution equation appropriate in the analogous three-dimensional
problem has not been derived, however, and here we shall take up this question
on the assumption of steady flow. While transient effects are likely to be important
close to resonance in the three-dimensional problem as well, the steady-flow analysis,
nevertheless, fits naturally in this discussion and reveals useful insights into the
three-dimensional nature of the inner flow and the far-field response.

In terms of the topography amplitude parameter ε, now assumed small (ε� 1) as
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Figure 2. Streamwise velocity profile u(x = 0, Y = 0, z), as given by (3.39), of flow over topography
with the Gaussian profile (3.26): - - - -, expression (3.39) without three-dimensional correction; ——,
expression (3.39) including three-dimensional correction. (a) Uniformly stratified (N = 1) flow of
Froude number F = 0.1326 over topography with peak amplitude ε = 0.08 and aspect ratio α = 0.1.
(b) Flow with Brunt–Väisälä frequency profile (ii) in (3.40) and Froude number F = 0.1292 over
topography with peak amplitude ε = 0.152 and aspect ratio α = 0.1. (c) Flow with Brunt–Väisälä
frequency profile (iii) in (3.40) and Froude number F = 0.1405 over topography with peak amplitude
ε = 0.115 and aspect ratio α = 0.1.

in Grimshaw & Yi (1991), resonant uniformly stratified (N = 1) flow is defined by

1

F2
= (mπ)2 + λε (ε� 1), (4.1)

where Fm = 1/(mπ) according to (3.28), λ = O(1) being a resonance-detuning param-
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eter. Furthermore, the bottom boundary condition (2.16) may be expanded as

Ψ + εf Ψz + O(ε2) = 0 (z = 0). (4.2)

4.1. Inner flow

Returning to equation (2.21) and taking into account the boundary conditions (3.1)
and (4.2), Ψ (0) is given by

Ψ (0) = z + A(x, Y ) sinmπz. (4.3)

As already remarked, the resonant mode dominates in this instance, and the amplitude
A(x, Y ) will be determined at a later stage in the perturbation expansion.

Based on (4.3), equation (2.20) then yields

V (0) = mπ
∂

∂Y

∫ x

−∞
dx′ A(x′, Y ) cos mπz(x′, Y ,Ψ (0)) + C(0)(Y ,Ψ (0)), (4.4)

C(0) being a constant of integration as before. Hence, the inner spanwise velocity
suffers a known jump from far upstream to far downstream:

∆V (0) = V (0)
∣∣x→∞
x→−∞ = mπ

∂

∂Y

∫ ∞
−∞

dx′ A(x′, Y ) cos mπz(x′, Y ,Ψ (0)). (4.5)

In preparation for matching with the outer flow, we next expand ∆V (0) in a Fourier
series, analogous to (3.22):

∆V (0) = mπ
∂

∂Y

∞∑
n=0

sn(Y ) cos nmπz. (4.6)

It is important to note that (4.6) differs from its non-resonant counterpart (3.22),
however, in one important respect: from (4.5), it is clear that the coefficients sn of the
non-resonant modes (n 6= 1) in (4.6) derive solely from nonlinear effects (sn = 0 for
n 6= 1 based on linear theory), and this bears on the outer flow in a significant way
as discussed below.

4.2. Outer flow

Scaling the outer flow variables as in (3.11), ψ̃ and φ̃ again satisfy, to leading order,
the linear three-dimensional hydrostatic equations (3.13) and (3.14) (with N = 1 and
F = Fm), subject to the boundary conditions (3.15).

Taking the Fourier transform with respect to Y as before, the solution for ψ̂(x̃, z; l),
analogous to (3.16b), now reads

ψ̂ = 0 (x̃ < 0), (4.7a)

ψ̂ =

∞∑
n=2

{
bn sin

lx̃

(n2 − 1)1/2
+ dn cos

lx̃

(n2 − 1)1/2

}
sin nmπz (x̃ > 0). (4.7b)

Note that no term corresponding to n = 1 is included in the sum (4.7b) because the
resonant mode satisfies the two-dimensional hydrostatic equations and such a term
would be singular for l 6= 0.

Using (4.7), the solution for φ̂(x̃, z; l), analogous to (3.17), is then found to be

φ̂ = a−0 e|l|x̃ (x̃ < 0), (4.8a)
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φ̂ = a+
0 e−|l|x̃ + i

mπ

l

∞∑
n=2

n2 − 1

n

×
{
bn sin

lx̃

(n2 − 1)1/2
+ dn cos

lx̃

(n2 − 1)1/2

}
cos nmπz (x̃ > 0). (4.8b)

The coefficients a±0 , bn and dn (n > 2) in (4.7) and (4.8b) are determined by matching
with the inner flow, the matching conditions being again (3.18) and (3.21). Specifically,
imposing (3.18) yields

a+
0 = a−0 , dn = 0 (n > 2), (4.9)

and (3.21), combined with (4.6), determines a±0 and bn (n > 2):

a±0 = i
mπ

2
sgn l ŝ0(l), bn = − nl

(n2 − 1)1/2
ŝn(l) (n > 2). (4.10)

To complete the matching, it remains to satisfy the jump condition (4.6) for
n = 1. Since the steady-state solution of the linear hydrostatic problem is singular at
resonance (Baines 1995, § 2.2.1), however, no acceptable solution of the outer flow,
consistent with (4.3) and this jump condition, can be found. Hence, the only way out
of this impasse seems to be to postulate that

ds1
dY

= 0. (4.11)

This imposes a constraint on the (as yet undetermined) amplitude A(x, Y ) of the
resonant mode in the inner flow. In the small-amplitude limit (|A| � 1), in fact, it is
easy to show that

s1 =

∫ ∞
−∞

dx(A− 3
8
m2π2A3 + · · ·).

Accordingly, (4.11) may be viewed as the finite-amplitude analogue of the familiar
constraint

d

dY

∫ ∞
−∞

A dx = 0 (4.12)

of the fKP equation that governs the amplitude A in the weakly nonlinear régime
(Grimshaw 1985; Katsis & Akylas 1987; Grimshaw & Melville 1989).

Finally, substituting (4.9) and (4.10) in (4.7) and (4.8b) and inverting the Fourier
transforms, the outer flow is given by

ψ̃ = 0 (x̃ < 0), (4.13a)

ψ̃ =
1

2

∞∑
n=2

n

(n2 − 1)1/2

{
s′n

(
Y +

x̃

(n2 − 1)1/2

)

−s′n
(
Y − x̃

(n2 − 1)1/2

)}
sin nmπz (x̃ > 0); (4.13b)

φ̃ =
mπ

2

∫ ∞
−∞

dl i sgnl ŝ0(l) eilY e|l|x̃ (x̃ < 0), (4.14a)
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φ̃ =
mπ

2

∫ ∞
−∞

dl i sgnl ŝ0(l) eilY e−|l|x̃ − mπ

2

∞∑
n=2

(n2 − 1)1/2

{
sn

(
Y +

x̃

(n2 − 1)1/2

)

−sn
(
Y − x̃

(n2 − 1)1/2

)}
cos nmπz (x̃ > 0). (4.14b)

Comparing (4.13) and (4.14) to (3.25) and (3.26), the far-field disturbance induced
by resonant flow is very similar to that found earlier in non-resonant flow, even though
the generation mechanisms of the oblique wavetrains that appear downstream are
quite different in these two instances. In the present case, in particular, the nonlinear
nature of the inner flow plays an important part: as already noted, the functions
sn(Y ) (n > 2) would be zero if the inner disturbance were assumed to be linear, and
the downstream response would be significantly weaker (by a factor of O(α2)). In this
regard, the oblique downstream wavetrains found here are analogous to the shelves
trailing an unsteady two-dimensional nonlinear disturbance in uniformly stratified
flow, that are driven by nonlinear interactions as well (Prasad & Akylas 1997).

4.3. Amplitude equation

To derive the equation governing the amplitude A(x, Y ) of the resonant mode in (4.3),
we return to the inner flow and consider how to obtain higher-order corrections to
Ψ (0) due to dispersive, three-dimensional and forcing effects.

Working as before (see § 3.3), matching of the inner flow with the outer flow (4.13)
and (4.14) suggests that

Φ = y + φ̄(Y ,Ψ (0)) + αφ,

where

φ̄ = lim
x̃→0

φ̃ =
mπ

2

∫ ∞
−∞

dl i sgn l ŝ0(l) eilY =
mπ

2
HY {s0}, (4.15)

HY {s0} denoting the Hilbert transform of s0(Y ).
Furthermore, expanding Ψ as in (3.33),

Ψ = Ψ (0) + αΨ (1) + · · · ,
and choosing α = ε = µ2 so that dispersive, three-dimensional, forcing and resonance-
detuning effects are equally important, it follows from (2.14), (3.1), (4.1) and (4.2) that
Ψ (1) satisfies the forced problem

Ψ (1)
zz + (mπ)2Ψ (1) = −2Ψ (0)

zz φ̄Y − λ(Ψ (0) − z)−Ψ (0)
xx , (4.16)

Ψ (1) = −fΨ (0)
z (z = 0), (4.17a)

Ψ (1) = 0 (z = 1). (4.17b)

Invoking the usual solvability argument, since sinmπz is a non-trivial solution of
the corresponding homogeneous problem, the forced problem (4.16) and (4.17) is
solvable only if the condition

mπfΨ (0)
z (z = 0) =

∫ 1

0

dz sinmπz {2Ψ (0)
zz φ̄Y + λ(Ψ (0) − z) +Ψ (0)

xx }
is satisfied. Using (4.3) and (4.15), this condition in turn yields the following equation
for A(x, Y ):

Axx + λA− (mπ)3 A
∂

∂Y
HY {s0} = mπ(1 + mπA)f. (4.18)
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An interesting, if not puzzling, feature of the amplitude equation (4.18) is that the
three-dimensional term involves s0(Y ) which, according to (4.5) and (4.6), is associated
with the mean-flow component of the inner-flow spanwise velocity; since this mean
flow is induced by nonlinear interactions in the inner flow and would be absent in
linear theory, the three-dimensional term of equation (4.18) is fully nonlinear,

A
∂

∂Y
HY {s0} ∼ mπ

2
A
∂

∂Y

∫ ∞
−∞

dxHY {A2} (A→ 0),

so it does not reduce to the linear three-dimensional term of the fKP equation in
the small-amplitude limit. On closer inspection of (2.14), a three-dimensional term
analogous to that of the fKP equation does in fact appear in (4.18) but at O(α2),
suggesting that (4.18) may not be uniformly valid as A → 0. This is reminiscent
of Whitham’s theory for slow modulations of finite-amplitude periodic waves which
does not yield the nonlinear Schrödinger equation in the small-amplitude limit unless
certain higher-order dispersive terms are included (Newell 1985, § 2e).

Another issue that needs to be addressed is the role of the constraint (4.11) in
solving the nonlinear amplitude equation (4.18). In the small-amplitude régime, the
origin of the constraint (4.12) of the fKP equation can be understood based on the
linear dispersion relation (Katsis & Akylas 1987), and it turns out that solving the
fKP equation, starting from rest, is consistent with this constraint (Grimshaw &
Melville 1989). Here, on the other hand, the three-dimensional term in (4.18) is fully
nonlinear so interpreting the nonlinear constraint (4.11) is not as straightforward.
It is not clear, in fact, under what conditions the evolution equation (4.18) accepts
solutions that satisfy the constraint (4.11), and we shall make no attempt to answer
this question here.

5. Vertically unbounded flow
Finally, we briefly consider the case of vertically unbounded uniformly stratified

(N = 1) flow. In this instance, the spectrum of long-wave modes is continuous so the
flow may be regarded as resonant for all flow speeds and we may set F = 1 without
any loss. On the other hand, this resonance is relatively weak compared with that
in flow of finite depth and the topography must have finite steepness, ε = O(1), in
order for the induced disturbance to be of finite amplitude (Kantzios & Akylas 1993).
Accordingly, the problem at hand has aspects in common with both the resonant
and the non-resonant flows of finite depth discussed earlier. In the interest of brevity,
therefore, we shall focus on the salient features of the analysis, particularly those that
derive from the fact that here a radiation condition, rather than a rigid-lid condition,
applies in the vertical direction.

5.1. Inner flow

From equation (2.21), Ψ (0) here takes the form

Ψ (0) = z + a(x, Y ) cos z − b(x, Y ) sin z; (5.1)

the radiation condition of no incoming energy as z → ∞ (Lilly & Klemp 1979)
requires that

b = −Hx{a}, (5.2)
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Hx{·} being the Hilbert transform with respect to x, and imposing the boundary
condition (2.16) on the topography yields

a cos εf +Hx{a} sin εf = −εf. (5.3)

For a given topography profile, (5.3) is an integral equation to determine the
amplitude a(x, Y ) and thereby the amplitude b(x, Y ) via (5.2). In particular, far from
the topography, it follows from (5.1) and (5.2) that

Ψ (0) ∼ z − 1

πx

∫ ∞
−∞

a(x′, Y ) dx′ sin z (x→ ±∞). (5.4)

Turning attention next to the spanwise velocity component, substituting (5.1) in
(2.20) and integrating along x holding Ψ (0) fixed, after some manipulation, yields

V (0) = − ∂

∂Y

{
q cos z(x, Y ,Ψ (0))

+

∫ x

−∞
dx′
(
a+ q

∂z

∂x′

) ∣∣∣∣
Ψ (0)

sin z(x′, Y ,Ψ (0))

}
+ C(0)(Y ,Ψ (0)), (5.5)

where

q =

∫ x

0

b dx′

and C(0) stands for a constant of integration.
From (5.1) and (5.4), it is clear that b(x, Y ) decays like 1/x and q diverges

logarithmically as x → ±∞. Accordingly, (5.5) indicates that, in this instance, V (0)

diverges logarithmically far from the topography:

V (0) ∼ − ln |x|
π

∫ ∞
−∞

aY (x′, Y ) dx′ cos z (x→ ±∞); (5.6)

moreover, V (0) suffers a known jump from far upstream to far downstream:

∆V (0) ≡ V (0)
∣∣x→∞
x→−∞ = − ∂

∂Y

∫ ∞
−∞

dx′
(
a+ q

∂z

∂x′

) ∣∣∣∣
Ψ (0)

sin z(x′, Y ,Ψ (0)). (5.7)

Since ∆V (0) is 2π-periodic in Ψ (0), it may be expanded in a Fourier series, analogous
to (3.22) and (4.6):

∆V (0) =
∂

∂Y

{
s0(Y ) +

∞∑
n=1

(sn(Y ) cos nz + rn(Y ) sin nz)

}
. (5.8)

In the small-amplitude limit (a, b� 1) in particular, inverting (5.1) approximately to
obtain z in terms of Ψ (0) and substituting the result in (5.7), it is easy to verify that,
apart from r1, the rest of the coefficients in this series arise from nonlinear interactions
of the various harmonics – rn (n > 2), sn (n > 0) would vanish according to linear
theory. In this respect, vertically unbounded flow behaves similarly to resonant flow
of finite depth discussed in § 4 and one expects nonlinear effects to play an important
part in determining the outer flow here as well.

5.2. Outer flow

Adopting the same scalings as before, the outer flow variables ψ̃ and φ̃ again satisfy,
to leading order, the linear hydrostatic equations (3.13) and (3.14) (with N = F = 1);
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furthermore, the matching conditions (3.18) and (3.21), with ∆V (0) given by (5.8), still
apply. On the other hand, the solution here is complicated by the fact that the flow is
unbounded in the vertical direction so the boundary condition (3.15) on z = 1 must
be replaced by a radiation condition.

In solving for the outer flow, we write

ψ̃ =

∞∑
n=1

ψ̃(n), φ̃ =

∞∑
n=0

φ̃(n), (5.9)

where ψ̃(n) and φ̃(n) arise from the harmonic n in the expansion (5.8) of the velocity
jump imposed by the inner flow. Furthermore, for n > 2, it is convenient to split ψ̃(n)

and φ̃(n) into two parts:

ψ̃(n) = ψ̃
(n)
forced + ψ̃

(n)
free, φ̃(n) = φ̃

(n)
forced + φ̃

(n)
free; (5.10)

the forced part satisfies the jump condition corresponding to the harmonic n in
(5.8) and derives from nonlinear interactions in the inner flow, while the free part,
chosen so as to radiate energy outwards as z → ∞, is added to satisfy the boundary
condition (3.15) on z = 0. A similar strategy was used by Thorpe (1987) in discussing
the reflection of a finite-amplitude wavetrain from a slope.

Working as before, taking the Fourier transform with respect to Y of the outer-flow
equations (3.13) and (3.14) and imposing the matching conditions (3.18) and (3.21),
taking into account (5.8), yields for n = 0

φ̃(0) =
1

2

∫ ∞
−∞

dl i sgn l e±|l|x̃ eilY ŝ0(l) (x̃ ? 0). (5.11)

Furthermore, for (n > 2),

ψ̃
(n)
forced = 0 (x̃ < 0), (5.12a)

ψ̃
(n)
forced = − n

2(n2 − 1)1/2

{[
r′n

(
Y +

x̃

(n2 − 1)1/2

)
− r′n

(
Y − x̃

(n2 − 1)1/2

)]
cos nz

−
[
s′n

(
Y +

x̃

(n2 − 1)1/2

)
− s′n

(
Y − x̃

(n2 − 1)1/2

)]}
sin nz (x̃ > 0); (5.12b)

φ̃
(n)
forced = 0 (x̃ < 0), (5.13a)

φ̃
(n)
forced = − (n2 − 1)1/2

2

{[
rn

(
Y +

x̃

(n2 − 1)1/2

)
− rn

(
Y − x̃

(n2 − 1)1/2

)]
sin nz

+

[
sn

(
Y +

x̃

(n2 − 1)1/2

)
− sn

(
Y − x̃

(n2 − 1)1/2

)]}
cos nz (x̃ > 0). (5.13b)

The free-wave solution components ψ̃(n)
free and φ̃

(n)
free, consistent with the radiation

condition, that need to be added to ψ̃(n)
forced and φ̃(n)

forced for n > 2 in order to satisfy the
boundary condition (3.15) on z = 0, then are given by

ψ̃
(n)
free =

n

2π

∫ ∞
−∞

dl l2 r̂n(l) eilY

∫
C−

dk eikx̃ eiσz

(n2 − 1)k2 − l2 , (5.14)

φ̃
(n)
free =

n

2π

∂2

∂Y ∂z

∫ ∞
−∞

dl l2 r̂n(l) eilY

∫
C−

dk
eikx̃

k2 + l2
eiσz

(n2 − 1)k2 − l2 , (5.15)
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where σ = (k2 + l2)1/2/k and the contour C− is indented to pass below the poles on
the real k-axis.

While it does not appear possible that the integrals in expressions (5.14) and (5.15)
can be evaluated analytically, it is clear from (5.12) and (5.13) that a wake structure,
similar to that found earlier in flow of finite depth, is induced downstream. These
wakes stem solely from nonlinear interactions in the inner flow that, as already
remarked, are responsible for the higher harmonics in (5.8) – the corresponding linear
response would remain entirely locally confined.

Finally, unlike resonant flow of finite depth, here a solution of the outer equations
can be found that satisfies the matching condition (5.8) for n = 1 and is consistent
with the inner solution (5.4) and (5.6), so there is no need for a constraint analogous
to (4.11). We shall omit the details since this solution is locally confined and does not
affect the wake structure far downstream.

6. Discussion
The preceding analysis was motivated by the need to improve our theoretical

understanding of three-dimensional nonlinear stratified flow over locally confined to-
pography, a problem of considerable significance in various geophysical settings. Since
the fully nonlinear three-dimensional equations of motion are analytically intractable
and there is no three-dimensional counterpart of Long’s model, we considered nearly
hydrostatic steady flow over topography that is more elongated in the spanwise than
the streamwise direction; in this instance, the three-dimensional nonlinear flow can
be analysed via a matched-asymptotics procedure.

In all three flow configurations examined, the outer flow far downstream features
multiple small-amplitude oblique wavetrains that are driven by the nonlinear inner
flow over the topography and form supercritical wakes. The nature of the generation
mechanism of these wakes, however, depends on whether the flow is resonant. The
downstream wakes found in non-resonant flow of finite depth, in particular, do not
hinge on nonlinear effects and are direct counterparts of the familiar wake induced
by linear hydrostatic free-surface flow of a homogeneous fluid over three-dimensional
topography at supercritical Froude number (Baines 1995, § 2.2). This is in contrast to
resonant flow of either finite or infinite depth where the generation of downstream
wakes is controlled by nonlinear interactions in the inner flow so, in this instance,
the wakes are more akin to the shelves trailing a finite-amplitude two-dimensional
unsteady disturbance (Prasad & Akylas 1997).

An oblique atmospheric internal wave, similar to the downstream wavetrains re-
vealed by the present analysis, was noted by Gjevik & Marthinsen (1978) east of
the island of Jan Mayen, but their theory, using a point source as the excitation,
could not account for this essentially hydrostatic disturbance. Our findings, on the
other hand, support the explanation suggested by Baines (1995, § 6.3) who pointed
out the analogy with the wake induced by supercritical free-surface hydrostatic flow
over locally confined topography.

The asymptotic theory was also used to examine how weak three-dimensional
effects influence the onset of breaking in non-resonant nonlinear flow of finite depth
over topography. In all examples considered, it was found that three-dimensional
effects delay the onset of breaking, consistent with experimental observations (Castro
& Snyder 1993) and numerical simulations (Smolarkiewicz & Rotunno 1990; Smith
& Grøn̊as 1993). More precisely, the critical topography amplitude for overturning
predicted by two-dimensional theory is increased by O(α) owing to three-dimensional
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effects, α � 1 being the topography aspect ratio. The experimental observations of
Castro & Snyder (1993) suggest that the two-dimensional nonlinear theory provides
a reasonable estimate for the onset of breaking in the limit α → 0, and it would
be interesting to test experimentally our theoretical predictions (namely equation
(3.42)) which account for the leading-order three-dimensional correction to the two-
dimensional theory in the hydrostatic small-aspect-ratio régime. (Unfortunately, the
observations of Castro & Snyder (1993) are not in the hydrostatic régime, precluding
quantitative comparison with the present theory.)

On the other hand, as remarked in § 3.4, the asymptotic theory assumes that the
inner flow is weakly three-dimensional and cannot be used to predict the onset of
flow splitting. The present theory is also limited by the assumption that no breaking
streamlines are present in the leading-order two-dimensional flow field; as indicated in
(3.7), this restricts the topography amplitude ε (ε 6 ε2D

c ) and, hence, the topographic
Froude number F∗ = F/ε (F∗ > F∗2Dc ). For this reason, it is not feasible to compare
our theoretical findings with those of Drazin’s model (Drazin 1961) which is valid in
the limit F∗ → 0 and predicts flow splitting for any topography aspect ratio α > 0.

Finally, the present study has raised a number of questions that remain open.
While here the emphasis has been on three-dimensional effects on the assumption of
steady nonlinear flow, unsteady effects are expected to play an important part as well,
especially in resonant flow. It would be interesting to see how the transient breaking of
two-dimensional flow of finite depth, predicted by the GY equation close to resonance
conditions, is modified by three-dimensional effects. Accounting for transience in this
instance may also shed light on the role of the nonlinear constraint (4.11) on the
amplitude A(x, Y ) of the resonant mode and may clarify the apparently non-uniform
validity of the amplitude equation (4.18) in the small-amplitude limit. In addition,
one expects an unsteady nonlinear three-dimensional disturbance to be accompanied
far downstream by a combination of the wake structure revealed by the present study
and the shelves found in Prasad & Akylas (1997).
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